Respuesta :

I hope this helps you
Ver imagen Аноним

Answer:

Full explanation is down here

Step-by-step explanation:

Hello!

Recall the standard form of a quadratic: [tex]ax^2 + bx + c[/tex]

Solve for x:

[tex]ax^2 + bx + c = 0[/tex]

  • Subtract c

[tex]ax^2 + bx = -c[/tex]

  • Divide all sides by a

[tex]x^2 + \frac{b}{a}x = \frac{-c}{a}[/tex]

  • Complete the square (make sure to add to both sides)

[tex]x^2 + \frac{b}{a}x + \frac{b^2}{4a^2} = \frac{-c}{a} + \frac{b^2}{4a^2}[/tex]

  • Factor the Perfect Square Trinomial

[tex](x+\frac{b}{2a})^2 = \frac{-c}{a} + \frac{b^2}{4a^2}[/tex]

  • Simplify the right side using a LCD (least common denominator)

[tex](x+\frac{b}{2a})^2 = \frac{-4ac+b^2}{4a^2}[/tex]

  • Take the square root of both sides

[tex]\sqrt{(x+\frac{b}{2a})^2} = \sqrt{\frac{-4ac+b^2}{4a^2}}[/tex]

  • Simplify (make sure to add the plus or minus sign!!)

[tex]x+\frac{b}{2a} = \frac{\pm\sqrt{-4ac+b^2}}{2a}[/tex]

  • Subtract b/2a from both sides

[tex]x = \frac{\pm\sqrt{-4ac+b^2}}{2a} - \frac{b}{2a}[/tex]

  • Convert to traditional format

[tex]x = \frac{-b\pm\sqrt{b^2 - 4ac}}{2a}[/tex]

Completing the square:

Recall the standard form of a quadratic: [tex]ax^2 + bx + c[/tex]

To complete a square, we must find the "c" value given [tex]ax^2 + bx + c[/tex] so that it converts into a perfect square trinomial.

To find c:

  • Take the b-value
  • Divide it by 2
  • Square it

Example: Given the expression [tex]x^2 - 8x[/tex], complete the square

Let's find the missing "c" value:

  • Take the b-value: -8
  • Divide it by 2: -4
  • Square it: 16

Now, complete the square:

  • [tex]x^2 - 8x[/tex]
  • [tex]x^2 - 8x + 16[/tex]

To quickly factor this into a perfect square trinomial, simply take the value you get from the second step (Divide by 2) and plug it in.

Your factored expression will be (x - 4)²