1. For what values of x does the function y=2x+13 take on a positive value? a negative value?

2.
 a+3 over (a^2−1) − 1 over (a^2+a)

Respuesta :

[tex]2x+13=0\\ 2x=-13\\ x=-6.5[/tex]

The function is linear where [tex]a\ \textgreater \ 0[/tex], so it's negative for [tex]x\ \textless \ -6.5[/tex] and positive for [tex]x\ \textgreater \ -6.5[/tex]

............................

[tex]D:x\in\mathbb{R}\setminus\{-1,1,0\}\\\\ \dfrac{a+3}{a^2-1} - \dfrac{1}{a^2+a}=\\ \dfrac{a+3}{(a-1)(a+1)} - \dfrac{1}{a(a+1)}=\\ \dfrac{a(a+3)}{a(a-1)(a+1)} - \dfrac{a-1}{a(a-1)(a+1)}=\\ \dfrac{a^2+3a-a+1}{a(a-1)(a+1)}=\\ \dfrac{a^2+2a+1}{a(a-1)(a+1)}=\\ \dfrac{(a+1)^2}{a(a-1)(a+1)}=\\ \dfrac{a+1}{a(a-1)} [/tex]

for [tex]a\in(-\infty,-1)[/tex] it's negative
for [tex]a\in(-1,0)[/tex] it's positive
for [tex]a\in(0,1)[/tex] it's negative
for [tex]a\in(1,\infty)[/tex] it's positive