Respuesta :
ln(5^x) = ln(81.2)
xln(5) = ln(81.2)
x= ln(81.2)/ln(5)
x= ln(406/5)/ln(5)
x = ln(406) - ln(5)/ln(5)
log (ab) = log(A) + log (B)
ln(2) +ln7 + ln(29 - ln(5)/ln(5)
x = 2.7320 (4dp)
xln(5) = ln(81.2)
x= ln(81.2)/ln(5)
x= ln(406/5)/ln(5)
x = ln(406) - ln(5)/ln(5)
log (ab) = log(A) + log (B)
ln(2) +ln7 + ln(29 - ln(5)/ln(5)
x = 2.7320 (4dp)
Answer:
The value of x is 2.7320 ( approx )
Step-by-step explanation:
Given equation,
[tex]5^x=81.2[/tex]
Taking log on both sides,
[tex]log 5^x = log (81.2)[/tex]
By using the property of log i.e. [tex]log a^b = b log a[/tex]
[tex]x log 5 = log (81.2)[/tex]
[tex]\implies x = \frac{log (81.2)}{log 5}=2.731957\approx 2.7320[/tex]