Respuesta :
Answer: C. 0.0264.
Step-by-step explanation:
Given : Sample size : [tex]n=60[/tex]
Population mean : [tex]\mu=10[/tex]
Standard deviation: [tex]\sigma= 8[/tex]
Sample mean : [tex]\overline{x}=12[/tex]
We assume that the age of horses are normally distributed.
Test statistic:
z-score : [tex]z=\dfrac{\overlien{x}-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
i.e. [tex]z=\dfrac{12-10}{\dfrac{8}{\sqrt{60}}}\approx1.94[/tex]
Using the standard normal distribution table , the probability that a sample mean is 12 or larger for a sample from the horse population :-
[tex]P(x\geq12)=1-P(x<12)=1-0.9735661=0.0264339\approx0.0264[/tex]
Hence, the required probability = 0.0264