Respuesta :
[tex] 2^{x} = 3[/tex]
[tex] log_{2}3 = x[/tex]
[tex] \frac{log_3}{log_2} = x [/tex]
[tex]x = 1.585[/tex]
[tex] log_{2}3 = x[/tex]
[tex] \frac{log_3}{log_2} = x [/tex]
[tex]x = 1.585[/tex]
Answer:
The solution of the expression is x=1.584.
Step-by-step explanation:
Given : Expression [tex]2^x=3[/tex]
To find : Solve the expression round to the nearest ten thousandth?
Solution :
Step 1 - Write the expression,
[tex]2^x=3[/tex]
Step 2 - Taking log both side,
[tex]\log (2^x)=\log (3)[/tex]
Step 3 - Apply logarithmic property, [tex]\log a^x=x\log a[/tex]
[tex]x\log (2)=\log (3)[/tex]
Step 4 - Solve,
[tex]x=\frac{\log (3)}{\log (2)}[/tex]
[tex]x=\frac{0.477}{0.301}[/tex]
[tex]x=1.584[/tex]
Therefore, The solution of the expression is x=1.584.