Respuesta :

[tex] 2^{x} = 3[/tex]
[tex] log_{2}3 = x[/tex]
[tex] \frac{log_3}{log_2} = x [/tex]
[tex]x = 1.585[/tex]

Answer:

The solution of the expression is x=1.584.          

Step-by-step explanation:

Given : Expression [tex]2^x=3[/tex]

To find : Solve the expression round to the nearest ten thousandth?

Solution :  

Step 1 - Write the expression,

[tex]2^x=3[/tex]

Step 2 - Taking log both side,

[tex]\log (2^x)=\log (3)[/tex]

Step 3 - Apply logarithmic property, [tex]\log a^x=x\log a[/tex]

[tex]x\log (2)=\log (3)[/tex]

Step 4 - Solve,

[tex]x=\frac{\log (3)}{\log (2)}[/tex]

[tex]x=\frac{0.477}{0.301}[/tex]

[tex]x=1.584[/tex]

Therefore, The solution of the expression is x=1.584.