Respuesta :

cos (180° - q) = -cos q
First you would use the sum and difference formula of 
cos(a – b) = cos(a)cos(b) + sin(a)sin(b) because you have a difference inside the parentheses for cosine.

Hope this helps.

Answer:

[tex]\cos (a-b)=\cos a \cos b+\sin a \sin b[/tex]

Step-by-step explanation:

 Given : [tex]\cos (180^{\circ}-q)=-\cos q[/tex]

We have to write which identity we will use to prove the given statement.

Consider [tex]\cos (180^{\circ}-q)=-\cos q[/tex]

Take left hand side of given expression [tex]\cos (180^{\circ}-q)[/tex]

We know

[tex]\cos (a-b)=\cos a \cos b+\sin a \sin b[/tex]

Comparing , we get, a= 180° and b = q

Substitute , we get,

[tex]\cos (180^{\circ}-q)=\cos 180^{\circ}  \cos (q)+\sin q \sin 180^{\circ}[/tex]

Also, we know [tex]\sin 180^{\circ}=0[/tex] and [tex]\cos 180^{\circ}=-1[/tex]

Substitute, we get,

[tex]\cos (180^{\circ}-q)=-1\cdot \cos (q)+\sin q \cdot 0[/tex]

Simplify , we get,

[tex]\cos (180^{\circ}-q)=-\cos (q)[/tex]

Hence, use difference identity to  prove the given result.