Respuesta :
sin2x+cos2x=1
2sinxcosx+2cos^2x-1=1
2cosx(cosx+sinx-1)=0
2cosx=0 cosx+sinx=1
True
I did this with double angle formulas. sin2x=2sinxcosx, and cos2x=2cos^x-1. With plugging this in, I used factoring. At the end, there are two factors. One of the factors is cosx+sinx-1=0, which is cosx+sinx=1. Therefore, the answer is true.
2sinxcosx+2cos^2x-1=1
2cosx(cosx+sinx-1)=0
2cosx=0 cosx+sinx=1
True
I did this with double angle formulas. sin2x=2sinxcosx, and cos2x=2cos^x-1. With plugging this in, I used factoring. At the end, there are two factors. One of the factors is cosx+sinx-1=0, which is cosx+sinx=1. Therefore, the answer is true.
Answer with Step-by-step explanation:
We are given that it is true since
[tex] sin2x+ cos2x=1[/tex] then[tex] sinx+cosx=1[/tex]
We have to prove that [tex]sinx+cosx=1[/tex]
We know that
[tex] sin2x=2sinxcosx[/tex]
[tex]cos2x=2cos^2x-1[/tex]
Substituting the values then we get
[tex]2sinxcosx+2cos^2x-1=1[/tex]
[tex]2sinxcosx+2cos^2x=1+1[/tex]
[tex]2(sinxcosx+cos^2x)=2[/tex]
[tex]sinxcosx+cos^2x-1=0[/tex]
[tex]cos^2x+sinxcosx=1[/tex]
[tex]cosx(cosx+sinx)=1[/tex]
[tex]cosx=1,cosx+sinx=1[/tex]
Hence, [tex] sinx+cosx=1[/tex]