[tex] \left \{ {{7*x - 3*y=25} \atop {2*x + 5*y=95}} \right. [/tex]
[tex]\left \{ {{7x - 3y=25}(I) \atop {2x + 5y=95}(II)} \right. [/tex]
[tex]\left \{ {{7x - 3y=25}simplify*(5) \atop {2x + 5y=95}simplify*(3)} \right. [/tex]
[tex]\left \{ {{35x - \diagup\!\!\!\! 15 y=125} \atop {6x + \diagup\!\!\!\! 15y=285}} \right. [/tex]
[tex]\left \{ {{35x =125} \atop {6x =285}} \right.[/tex]
[tex]41x = 410[/tex]
[tex]\boxed{x=10}[/tex]
Replace the value of "x" in the second equation (II) to find the value of "y", thus:
[tex]2x + 5y=95[/tex]
[tex]2*(10)+5y = 95[/tex]
[tex]20+5y=95[/tex]
[tex]5y=95-20[/tex]
[tex]5y=75[/tex]
[tex]y = \frac{75}{5} [/tex]
[tex]\boxed{y=15}[/tex]
The numbers (10,15)