Simplify completely quantity 5 x squared plus 9 x minus 2 over quantity x squared plus 12 x plus 20 times quantity x squared plus 17 x plus 70 over quantity 15 x minus 3.

Respuesta :

Answer:

quantity x plus 7 over 3 is the answer for this.

Step-by-step explanation:


Answer: Our simplified form will be

[tex]\frac{x+7}{3}[/tex]

Step-by-step explanation:

Since we have given that

[tex]\frac{5x^2+9x-2}{x^2+12x+20}\times \frac{x^2+17x+70}{15x-3}[/tex]

we will factorize the quadratic equations with the help of " Split the middle terms " .

[tex]5x^2+9x-2\\\\=5x^2+10x-x-2\\\\=5x(x+2)-1(x+2)\\\\=(5x-1)(x+2)[/tex]

similarly,

[tex]x^2+12x+20\\\\=x^2+10x+2x+20\\\\=x(x+10)+2(x+10)\\\\=(x+10)(x+2)[/tex]

Similarly,

[tex]x^2+17x+70\\\\=x^2+10x+7x+70\\\\=x(x+10)+7(x+10)\\\\=(x+10)(x+7)[/tex]

Now, our factorized form will be

[tex]\frac{5x^2+9x-2}{x^2+12x+20}\times \frac{x^2+17x+70}{15x-3}\\\\=\frac{(5x-1)(x+2)}{(x+10)(x+2)}\times \frac{(x+10)(x+7)}{15x-3}\\\\=\frac{5x-1}{x+10}\times \frac{(x+10)(x+7)}{3(5x-1)}\\\\=\frac{x+7}{3}[/tex]