Respuesta :

dy/dx = x²y²

d²y/dx² = is taking the derivative of the dy/dx

Note that if y = xⁿ,  dy/dx = nxⁿ ⁻ ¹.

For x²y² we will apply product rule of differentiation and implicit differentiation.

Product rule for y = uv

dy/dx = v(du/dx) + u(dv/dx)

dy/dx = x²y²

d²y/dx² = 2xy² + x²*2y*(dy/dx)

d²y/dx² = 2xy² + 2x²y*(dy/dx)

But recall dy/dx = x²y² 

d²y/dx² = 2xy² + 2x²y*(dy/dx)

d²y/dx² = 2xy² + 2x²y*( x²y²)

d²y/dx² = 2xy² + 2x⁴y³ = 2xy²(1 + x³y)

I hope this helps.

[tex]\frac{d^2y}{dx^2} =2xy^2+2x^4y^3[/tex] will be the answer.

  Given derivative in the question,

  [tex]\frac{dy}{dx}=x^{2}y^{2}[/tex]

To find the second derivative, differentiate the expression again by using partial differentiation,

[tex]\frac{d^2y}{dx^2}=\frac{dy}{dx}(x^2y^2)[/tex]

     [tex]=y^2\frac{d}{dx}(x^2)+x^2\frac{d}{dx}(y^2)[/tex]

     [tex]=y^2(2x)+x^2(2y.\frac{dy}{dx})[/tex]

     [tex]=2xy^2+2yx^2(\frac{dy}{dx})[/tex]

     [tex]=2xy^2+2yx^2(x^2y^2)[/tex]  [Since, [tex]\frac{dy}{dx}=x^{2}y^{2}[/tex]]

     [tex]=2xy^2+2x^4y^3[/tex]

  Therefore, [tex]\frac{d^2y}{dx^2}=2xy^2+2x^4y^3[/tex] will be the answer.

Learn more,

https://brainly.com/question/7783460