Respuesta :
Data:
[tex]f_{2} = 42 Hz[/tex]
n (Wave node)
V (Wave belly)
L (Wave length)
The number of bells is equal to the number of the harmonic emitted by the string.
[tex]f_{n} = \frac{nV}{2L} [/tex]
Wire 2 → 2º Harmonic → n = 2
[tex]f_{n} = \frac{nV}{2L} [/tex]
[tex]f_{2} = \frac{2V}{2L} [/tex]
[tex]2V = f_{2} *2L[/tex]
[tex]V = \frac{ f_{2}*2L }{2} [/tex]
[tex]V = \frac{42*2L}{2} [/tex]
[tex]V = \frac{84L}{2} [/tex]
[tex]V = 42L[/tex]
Wire 1 → 1º Harmonic or Fundamental rope → n = 1
[tex]f_{n} = \frac{nV}{2L} [/tex]
[tex]f_{1} = \frac{1V}{2L} [/tex]
[tex]f_{1} = \frac{V}{2L} [/tex]
If, We have:
V = 42L
Soon:
[tex]f_{1} = \frac{V}{2L} [/tex]
[tex]f_{1} = \frac{42L}{2L} [/tex]
[tex]\boxed{f_{1} = 21 Hz}[/tex]
Answer:
The fundamental frequency of the string:
21 Hz
[tex]f_{2} = 42 Hz[/tex]
n (Wave node)
V (Wave belly)
L (Wave length)
The number of bells is equal to the number of the harmonic emitted by the string.
[tex]f_{n} = \frac{nV}{2L} [/tex]
Wire 2 → 2º Harmonic → n = 2
[tex]f_{n} = \frac{nV}{2L} [/tex]
[tex]f_{2} = \frac{2V}{2L} [/tex]
[tex]2V = f_{2} *2L[/tex]
[tex]V = \frac{ f_{2}*2L }{2} [/tex]
[tex]V = \frac{42*2L}{2} [/tex]
[tex]V = \frac{84L}{2} [/tex]
[tex]V = 42L[/tex]
Wire 1 → 1º Harmonic or Fundamental rope → n = 1
[tex]f_{n} = \frac{nV}{2L} [/tex]
[tex]f_{1} = \frac{1V}{2L} [/tex]
[tex]f_{1} = \frac{V}{2L} [/tex]
If, We have:
V = 42L
Soon:
[tex]f_{1} = \frac{V}{2L} [/tex]
[tex]f_{1} = \frac{42L}{2L} [/tex]
[tex]\boxed{f_{1} = 21 Hz}[/tex]
Answer:
The fundamental frequency of the string:
21 Hz
Answer:
[tex]f_o = 21 Hz[/tex]
Explanation:
As we know that frequency of wave in stretched string is given as
[tex]f= \frac{nv}{2L}[/tex]
here we know that
n = number of harmonics
So we have fundamental frequency given as
[tex]f_o = \frac{v}{2L}[/tex]
also for second harmonic we have
n = 2
so we have
[tex]f_2 = 2 f_o[/tex]
[tex]42 = 2 f_o[/tex]
[tex]f_o = 21 Hz[/tex]