Respuesta :
We have
[tex]\cos \theta=\frac{9}{10}[/tex]
For secant, we use
[tex]\sec \theta=\frac{1}{\cos \theta}=\frac{1}{9/10}=\frac{10}{9}[/tex]
[tex]\cos \theta=\frac{9}{10}[/tex]
For secant, we use
[tex]\sec \theta=\frac{1}{\cos \theta}=\frac{1}{9/10}=\frac{10}{9}[/tex]
Answer:[tex]\frac{10}{9}[/tex]
Step-by-step explanation:
Trigonometric is made up of two words trigon and metric .
Trigon means triangle and metric means measurement .
Trigonometric ratios basically define the relationship between the angles and sides .
We talk about trigonometric ratios in a right angled triangle .
For any triangle , there are six trigonometric ratios .
We have trigonometric ratios : [tex]\sin \theta \,,\,\cos \theta \,,\,\tan \theta \,,\,\csc \theta \,,\,\sec \theta \,,\,\cot \theta[/tex] such that following relations hold :
[tex]\csc \theta =\frac{1}{\sin \theta }\\\\\sec \theta =\frac{1}{\cos \theta }\\\\\cot \theta =\frac{1}{\tan \theta }[/tex]
Given: [tex]\cos \theta =\frac{9}{10}[/tex]
To find : [tex]\sec \theta[/tex]
Solution:
We know that [tex]\sec \theta =\frac{1}{\cos \theta }[/tex] , so , [tex]\sec \theta =\frac{1}{\frac{9}{10} }=\frac{10}{9}[/tex]