Respuesta :
[tex]h=-16t^{2}+64t+80[/tex]
We set [tex]h=0[/tex]:
[tex]-16t^{2}+64t+80=0[/tex]
[tex]\Rightarrow t^{2}-4t-5=0[/tex]
[tex]\Rightarrow (t+1)(t-5)=0[/tex]
[tex]\Rightarrow t=-1[/tex] or [tex]t=5[/tex]
We use [tex]t=5[/tex] because a negative number wouldn't make sense
So the object hits the ground after 5 seconds.
We set [tex]h=0[/tex]:
[tex]-16t^{2}+64t+80=0[/tex]
[tex]\Rightarrow t^{2}-4t-5=0[/tex]
[tex]\Rightarrow (t+1)(t-5)=0[/tex]
[tex]\Rightarrow t=-1[/tex] or [tex]t=5[/tex]
We use [tex]t=5[/tex] because a negative number wouldn't make sense
So the object hits the ground after 5 seconds.
Answer:The object will hit the ground after 5 seconds
Step-by-step explanation:
Given height of tower =80 ft
h=-16[tex]t^{2}[/tex]+64t+80
When the object will hit the ground its height=0
0=-16[tex]t^{2}[/tex]+64t+80
Multiplying both sides by -1
16t²-64t-80=0
Dividing by 16 both sides
t²-4t-5=0
(t-5)(t+1)=0
t=5 or -1
So t=5 since time cannot be negative
The object will fall after 5 seconds