Can you identify a parallel or perpendicular equation and type the correct code? Please remember to type in ALL CAPS with no spaces.

The equation of the line that is parallel to [tex]2\cdot x + 5\cdot y = 10[/tex] is [tex]y = -\frac{2}{5} \cdot x + 3[/tex] and the equation of the line that is perpendicular to [tex]4\cdot x + 3\cdot y =12[/tex] is [tex]y =\frac{3}{4}\cdot x - 1[/tex].
Let be a line whose equation is:
[tex]a\cdot x + b\cdot y = c[/tex] (1)
Whose explicit form is:
[tex]y = -\frac{a}{b} \cdot x +\frac{c}{b}[/tex] (2)
Where:
The slope and x-intercept of the line are [tex]-\frac{a}{b}[/tex] and [tex]\frac{c}{b}[/tex], respectively.
There are two facts:
Then, the equation of the line that is parallel to [tex]2\cdot x + 5\cdot y = 10[/tex] is [tex]y = -\frac{2}{5} \cdot x + 3[/tex] and the equation of the line that is perpendicular to [tex]4\cdot x + 3\cdot y =12[/tex] is [tex]y =\frac{3}{4}\cdot x - 1[/tex].
To learn more on lines, we kindly invite to check this verified question: https://brainly.com/question/2696693