Respuesta :

The value of a in the equation is 10

The root of the equation is determined using the equation shown below:

[tex]x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]

Given the quadratic equation ax^2+x-24=0;

  • a = a
  • b = 1
  • c = -24

The product of the quadratic equation is c/a

Product = c/a

- 2 2/5 = -24/a

-12/5 = -24/a

-12a = 5 * -24

-12a = -120

a = 10

Hence the value of a in the equation is 10

Learn more about quadratic equation here: https://brainly.com/question/17210919

Compare to ax^2+bx+c

  • b=1
  • c=-24
  • a=a

Product of roots=c/a

ATQ

[tex]\\ \tt\hookrightarrow \dfrac{c}{a}=-2\dfrac{2}{5}[/tex]

[tex]\\ \tt\hookrightarrow \dfrac{-24}{a}=\dfrac{-12}{5}[/tex]

[tex]\\ \tt\hookrightarrow \dfrac{24}{a}=\dfrac{12}{5}[/tex]

[tex]\\ \tt\hookrightarrow 12a=120[/tex]

[tex]\\ \tt\hookrightarrow a=10[/tex]