Respuesta :
The value of a in the equation is 10
The root of the equation is determined using the equation shown below:
[tex]x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}[/tex]
Given the quadratic equation ax^2+x-24=0;
- a = a
- b = 1
- c = -24
The product of the quadratic equation is c/a
Product = c/a
- 2 2/5 = -24/a
-12/5 = -24/a
-12a = 5 * -24
-12a = -120
a = 10
Hence the value of a in the equation is 10
Learn more about quadratic equation here: https://brainly.com/question/17210919
Compare to ax^2+bx+c
- b=1
- c=-24
- a=a
Product of roots=c/a
ATQ
[tex]\\ \tt\hookrightarrow \dfrac{c}{a}=-2\dfrac{2}{5}[/tex]
[tex]\\ \tt\hookrightarrow \dfrac{-24}{a}=\dfrac{-12}{5}[/tex]
[tex]\\ \tt\hookrightarrow \dfrac{24}{a}=\dfrac{12}{5}[/tex]
[tex]\\ \tt\hookrightarrow 12a=120[/tex]
[tex]\\ \tt\hookrightarrow a=10[/tex]