Given that
(2a+b,11) and (1,a-3b) are equal ordered pair
⇛(2a+b,11) = (1,a-3b)
On comparing both sides then
2a+b = 1 ----------Eqn(1)
11 = a-3b
⇛ a-3b = 11 ------Eqn(2)
⇛ a = 11+3b-------Eqn(3)
On substituting the value of a in Eqn(1) then
⇛ 2(11+3b) + b = 1
⇛(2×11)+(2×3b) + b = 1
⇛ 22 +6b+b = 1
⇛ 22+7b = 1
⇛ 7b = 1-22
⇛ 7b = -21
⇛ b = -21/7
⇛ b = -3
On substituting the value of b in Eqn(3) then
⇛ a = 11+3(-3)
⇛ a = 11-9
a = 2
Therefore, a = -3 and b = 2
Answer:-The value of (a,b) for the given problem is (-3,2).