Respuesta :

[tex]\huge \rm༆ Answer ༄[/tex]

The equivalent expression is ~

  • [tex] \boxed {\boxed{ \sf2}}[/tex]

Refer to attachment for solution ~

Ver imagen DᴀʀᴋPᴀʀᴀᴅᴏx
Lanuel

For x such that 0 < x < [tex]\frac{\pi}{2}[/tex], the mathematical expression is:

[tex]\frac{\sqrt{1 \;-cos^2x} }{sinx} + \frac{\sqrt{1 \;-sin^2x} }{cosx} = 1+1=2[/tex]

Given the following data:

  • [tex]\frac{\sqrt{1 \;-cos^2x} }{sinx}[/tex]

  • [tex]\frac{\sqrt{1 \;-sin^2x} }{cosx}[/tex]

In Trigonometry, you should take note of the following mathematical expression:

[tex]sin^2x + cos^2x = 1[/tex]

Therefore, we can obtain the following:

[tex]sin^2x = 1 - cos^2x[/tex]   ...equation 1.

[tex]cos^2x = 1 - sin^2x[/tex]    ...equation 2.

Substituting the equations respectively, we have:

[tex]\frac{\sqrt{1 \;-cos^2x} }{sinx} + \frac{\sqrt{1 \;-sin^2x} }{cosx} = \frac{\sqrt{sin^2x} }{sinx} + \frac{\sqrt{cos^2x} }{cosx}\\\\[/tex]

Taking the square roots, we have:

[tex]\frac{sinx}{sinx} + \frac{cosx}{cosx} = 1 +1\\\\1+1=2[/tex]

Therefore, for x such that 0 < x < [tex]\frac{\pi}{2}[/tex], the expression is:

[tex]\frac{\sqrt{1 \;-cos^2x} }{sinx} + \frac{\sqrt{1 \;-sin^2x} }{cosx} = 1+1=2[/tex]

Read more on trigonometry here: https://brainly.com/question/4515552