Respuesta :
The quotient of the expression is [tex]\frac{1}{2y}[/tex]
The expression is given as:
[tex]\frac{3y^2}{3y} \div \frac{6y^4}{3y^2}[/tex]
Divide 3y^2 by 3y
[tex]\frac{3y^2}{3y} \div \frac{6y^4}{3y^2} = y \div \frac{6y^4}{3y^2}[/tex]
Rewrite the equation as a product
[tex]\frac{3y^2}{3y} \div \frac{6y^4}{3y^2} = y \times \frac{3y^2}{6y^4}[/tex]
Divide 6 by 3
[tex]\frac{3y^2}{3y} \div \frac{6y^4}{3y^2} = y \times \frac{y^2}{2y^4}[/tex]
Multiply y and y^2
[tex]\frac{3y^2}{3y} \div \frac{6y^4}{3y^2} = \frac{y^3}{2y^4}[/tex]
Divide y^3 by y^4
[tex]\frac{3y^2}{3y} \div \frac{6y^4}{3y^2} = \frac{1}{2y}[/tex]
Hence, the quotient of the expression is [tex]\frac{1}{2y}[/tex]
Read more about quotients at:
https://brainly.com/question/12217706