What is the quotient? StartFraction 3 y 2 Over 3 y EndFraction divided by StartFraction 6 y squared 4 y Over 3 y 2 EndFraction StartFraction 1 Over 2 y EnDfraction StartFraction 3 y 2 Over 6 y squared EndFraction StartFraction 1 Over y EndFraction StartFraction 2 (3 y 2) Over 3 EndFraction.

Respuesta :

The quotient of the expression is [tex]\frac{1}{2y}[/tex]

The expression is given as:

[tex]\frac{3y^2}{3y} \div \frac{6y^4}{3y^2}[/tex]

Divide 3y^2 by 3y

[tex]\frac{3y^2}{3y} \div \frac{6y^4}{3y^2} = y \div \frac{6y^4}{3y^2}[/tex]

Rewrite the equation as a product

[tex]\frac{3y^2}{3y} \div \frac{6y^4}{3y^2} = y \times \frac{3y^2}{6y^4}[/tex]

Divide 6 by 3

[tex]\frac{3y^2}{3y} \div \frac{6y^4}{3y^2} = y \times \frac{y^2}{2y^4}[/tex]

Multiply y and y^2

[tex]\frac{3y^2}{3y} \div \frac{6y^4}{3y^2} = \frac{y^3}{2y^4}[/tex]

Divide y^3 by y^4

[tex]\frac{3y^2}{3y} \div \frac{6y^4}{3y^2} = \frac{1}{2y}[/tex]

Hence, the quotient of the expression is [tex]\frac{1}{2y}[/tex]

Read more about quotients at:

https://brainly.com/question/12217706

Answer:

its B

Step-by-step explanation: