According to the Rational Root Theorem, the following are potential roots of f(x) = 2x2 2x â€" 24. â€"4, â€"3, 2, 3, 4 Which are actual roots of f(x)?.

Respuesta :

Rational root theorems are used to determine the potential roots of a polynomial function

  • The actual roots are 3 and -4
  • The potential roots are [tex]\pm0.5, \pm1, \pm 1.5, \pm2, \pm 3, \pm 4, \pm 6, \pm 8, \pm12,\pm 24[/tex]

The function is given as:

[tex]f(x) = 2x^2 + 2x - 24[/tex]

Expand

[tex]f(x) = 2x^2 + 8x - 6x - 24[/tex]

Expand

[tex]f(x) = 2x(x + 4) - 6(x + 4)[/tex]

Factor out x + 4

[tex]f(x) = (2x -6)(x + 4)[/tex]

Set to 0

[tex](2x -6)(x + 4) = 0[/tex]

Split

[tex](2x -6) = 0\ or\ (x + 4) = 0[/tex]

Make x the subject in both cases

[tex]2x = 6\ or\ x= -4[/tex]

Solve for x

[tex]x = 3\ or\ x= -4[/tex]

So, the actual roots are 3 and -4

Recall that, the function is:

[tex]f(x) = 2x^2 + 2x - 24[/tex]

For a function,

[tex]f(x) = px^n + ax^{n-1} +.......+q[/tex]

According to rational root theorem, the roots of f(x) are:

[tex]Roots = \pm \frac{Factors\ of\ q}{Factors\ of\ p}[/tex]

The roots of 24 are:

[tex]24 = \pm1, \pm2, \pm 3, \pm 4, \pm 6, \pm 8, \pm12,\pm 24[/tex]

The roots of 2 are:

[tex]2 = \pm1, \pm2[/tex]

So, the possible roots are:

[tex]Roots = \frac{\pm1, \pm2, \pm 3, \pm 4, \pm 6, \pm 8, \pm12,\pm 24}{\pm 1, \pm 2}[/tex]

This gives:

[tex]Roots = \pm1, \pm2, \pm 3, \pm 4, \pm 6, \pm 8, \pm12,\pm 24,\pm0.5, \pm1, \pm 1.5, \pm 2, \pm 3, \pm 4, \pm6\pm 12[/tex]

Remove repetitions

[tex]Roots = \pm0.5, \pm1, \pm 1.5, \pm2, \pm 3, \pm 4, \pm 6, \pm 8, \pm12,\pm 24[/tex]

Read more about rational root theorem at:

https://brainly.com/question/11015301

3 and -4 dudes and dudettes

edg2022