Please help solve for a in the equation in the photo

[tex]\huge\bf Question:—[/tex]
[tex] \sf \longmapsto \: g=a(4− {d}^{2} )[/tex]
[tex]\huge\bf Solution:—[/tex]
[tex] \underline{\bf \: Flip \: the \: equation:—}[/tex]
[tex] \sf \longmapsto \: −a {d}^{2} +4a=g[/tex]
[tex] \underline{\bf \: Factor \: out \: variable \: (a):—}[/tex]
[tex] \sf \longmapsto \: a(− {d}^{2} +4)=g[/tex]
[tex]\underline{ \bf \: Divide \: both \: sides \: by -d^2+4 :—} [/tex]
[tex]\sf \longmapsto \: \dfrac{a( - {d}^{2} + 4) }{ { - d ^2+ 4}^{} } = \dfrac{g}{{ - d ^2+ 4}^{}} [/tex]
[tex]\sf \longmapsto \:1 a = \dfrac{g}{{ - d^2 + 4}^{}} [/tex]
[tex]\underline{\bf Answer:—}[/tex]
[tex]\boxed{ \bf \: a = \dfrac{g}{ - d^2 + {4}^{} } }[/tex]
Answer:
[tex]\boxed{\boxed{\sf a=\cfrac{G}{4-d^2} }}[/tex]
Step-by-step explanation:
[tex]\sf G=a(4-d^2)[/tex]
Use the Distributive Property to multiply a by (4-d^2):
[tex]\sf G=4a-ad^2[/tex]
Now, we'll swap sides so that all variable terms are on the left hand side.
[tex]\sf 4a-ad^2=G[/tex]
Combine like terms:
[tex]\sf (4-d^2)\:a =G[/tex]
Divide both sides by 4-d^2:
[tex]\sf \cfrac{(4-d^2)a}{4-d^2} =\cfrac{G}{4-d^2}[/tex]
Dividing by 4-d^2 undoes the multiplication by 4-d^2.
[tex]\sf a=\cfrac{G}{4-d^2}[/tex]
_______________________________________