The corresponding height of the triangle is 1.6 units
The formula for calculating the area of a triangle is expressed as:
[tex]A=\frac{1}{2} bh[/tex]
Given the coordinates of the base BC of the triangle given as B(3, 2), and C(-1,-1). Using the distance formula:
[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\BC= \sqrt{(-1-2)^2+(-1-3)^2}\\BC=\sqrt{3^2+4^2}\\BC=\sqrt{25}\\BC=5units[/tex]
The area of the triangle passing through the coordinate points A(-1, 1), B(3,2), and C(-1, -1) is expressed as:
[tex]A=\frac{1}{2}[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)]\\[/tex]
Substituting the coordinate points:
[tex]A=\frac{1}{2}[(-1)(2-(-1))+3(-1-1)+-1(1-2)]\\A=\frac{1}{2}[(-1)(3)+3(-2)+-1(-1)]\\A=\frac{1}{2}[-3-6+1]\\A=\frac{1}{2} (-8)\\|A| =4 units^2[/tex]
Recall that:
[tex]A = 0.5bh\\h=\frac{A}{0.5b}\\h=\frac{4}{0.5(5)}\\h=\frac{4}{2.5}\\h= 1.6 units[/tex]
Hence the corresponding height of the triangle is 1.6 units
Learn more on area of triangles here: https://brainly.com/question/17335144