Among 420 randomly selected employees at a company, the mean number of hours of overtime worked per month is 10 hours and the standard deviation is 1. 6. What is the margin of error, assuming a 99% confidence level? 4. 12 0. 01 0. 20 20. 5.

Respuesta :

The margin of error of the random selection is 0.20

The given parameters are:

[tex]n = 420[/tex] --- the sample size

[tex]\sigma = 1.6[/tex] --- the standard deviation

[tex]\bar x = 10[/tex] --- the mean

[tex]\alpha = 99\%[/tex] --- the confidence level.

The margin of error (E) is calculated as follows:

[tex]E = z \times \sqrt{\frac{\sigma^2}{n}}[/tex]

So, we have:

[tex]E = z \times \sqrt{\frac{1.6^2}{420}}[/tex]

[tex]E = z \times \sqrt{\frac{2.56}{420}}[/tex]

The z-value for 99% confidence level is 2.576.

Substitute 2.576 for z

[tex]E = 2.576 \times \sqrt{\frac{2.56}{420}}[/tex]

[tex]E = 2.576 \times \sqrt{0.006095}[/tex]

Take square roots

[tex]E = 2.576 \times 0.0781[/tex]

Multiply

[tex]E = 0.2012[/tex]

Approximate

[tex]E = 0.20[/tex]

Hence, the margin of error is 0.20

Read more about margin of error at:

https://brainly.com/question/14396648