Respuesta :

Answer:

[tex]\frac{9x}{y^3}[/tex]

Step-by-step explanation:

[tex]\frac{\left(3x^2y^4\right)^3}{3x^5y^{15}}[/tex]

[tex](3x^2y^4)^3 : 3^3x^6y^1^2[/tex]

= [tex]\frac{3^3x^6y^{12}}{3x^5y^{15}}[/tex]

[tex]\frac{3^{3} }{2} = 3^{2}[/tex]

= [tex]\frac{3^2x^6y^{12}}{x^5y^{15}}[/tex]

= [tex]\frac{x^{6} }{x^{5} } : x[/tex]

= [tex]\frac{3^2xy^{12}}{y^{15}}[/tex]

=  [tex]\frac{y^{12} }{y^{15} } : \frac{1}{3{y} }[/tex]

= [tex]\frac{3^2x}{y^3}[/tex]

[tex]3^2=9[/tex]

= [tex]\frac{9x}{y^3}[/tex]