Respuesta :
The expression that represents the volume of the frustum in cubic units is [tex]\frac{1}{3} \pi (7.5)^2(19) - \frac{1}{3} \pi (3.5)^2(8)\\[/tex][tex]units^3[/tex]
The formula for calculating the volume of a cone is expressed as:
[tex]V=\frac{1}{3} \pi r^2h[/tex]
- r is the base radius of the cone
- h is the height of the cone
The volume of the frustum will be expressed as:
Vf = Volume of the larger cone - Volume of the smaller cone
The volume of the larger cone = [tex]\frac{1}{3} \pi (7.5)^2(11+8)\\[/tex]
- The volume of the larger cone = [tex]\frac{1}{3} \pi (7.5)^2(19)\\[/tex]
- The volume of the smaller cone = [tex]\frac{1}{3} \pi (3.5)^2(8)\\[/tex]
Taking the difference in volume:
Volume of the frustum = [tex]\frac{1}{3} \pi (7.5)^2(19) - \frac{1}{3} \pi (3.5)^2(8)\\[/tex]
Therefore the expression that represents the volume of the frustum in cubic units is [tex]\frac{1}{3} \pi (7.5)^2(19) - \frac{1}{3} \pi (3.5)^2(8)\\[/tex][tex]units^3[/tex]
Learn more about volume of frustum here: https://brainly.com/question/1273042
