How does a domain restriction placed on a non-invertible function affect its inverse? Drag a function or an interval into each box to correctly complete the statement. When the domain of the non-invertible function f(x)=(x+1)^2−3 is [−1,∞), the inverse of the function is Response area, and the domain of the inverse function is

Respuesta :

Using inverse function concepts, it is found that:

  • The inverse of the function is [tex]y = \sqrt{x + 3} - 1[/tex], and the domain of the inverse function is [tex][-3, \infty][/tex].

  • A function will have an inverse if for each output, there is only one respective input.
  • The domain of the inverse is the range of the original function.

The function given is:

[tex]f(x) = (x + 1)^2 - 3[/tex]

  • It's range is [tex][-3, \infty][/tex], which will be the domain of the inverse.

To find the inverse, we exchange x and y, and isolate y, then:

[tex]y = (x + 1)^2 - 3[/tex]

[tex]x = (y + 1)^2 - 3[/tex]

[tex](y + 1)^2 = x + 3[/tex]

[tex]\sqrt{(y + 1)^2} = \sqrt{x + 3}[/tex]

[tex]y + 1 = \sqrt{x + 3}[/tex]

[tex]y = \sqrt{x + 3} - 1[/tex]

The inverse of the function is [tex]y = \sqrt{x + 3} - 1[/tex], and the domain of the inverse function is [tex][-3, \infty][/tex].

A similar problem is given at https://brainly.com/question/13160937

Otras preguntas