Let f(x) = x^6( x − 8 )^7 / (x^2 +2)^2
Use logarithmic differentiation to determine the derivative.
f ' (x) =________

Respuesta :

If

f(x) = x⁶ (x - 8)⁷ / (x² + 2)²

then taking the logarithm of both sides lets us expand the right side as

ln(f(x)) = ln(x⁶ (x - 8)⁷ / (x² + 2)²)

ln(f(x)) = ln(x⁶) + ln((x - 8)⁷) - ln((x² + 2)²)

using the property ln(ab) = ln(a) + ln(b).

We can also use the property ln(aⁿ) = n ln(a), so that

ln(f(x)) = 6 ln(x) + 7 ln(x - 8) - 2 ln(x² + 2)

Then differentiating both sides using the chain rule gives

f'(x)/f(x) = 6 x'/x + 7 (x - 8)'/(x - 8) - 2 (x² + 2)'/(x² + 2)

f'(x)/f(x) = 6 (1)/x + 7 (1)/(x - 8) - 2 (2x)/(x² + 2)

f'(x)/f(x) = 6/x + 7/(x - 8) - 4x/(x² + 2)

Solve for f'(x) :

f'(x) = (6/x + 7/(x - 8) - 4x/(x² + 2)) f(x)

and replace f(x) with the given function :

f'(x) = (6/x + 7/(x - 8) - 4x/(x² + 2)) • x⁶ (x - 8)⁷ / (x² + 2)²

We can expand the product :

f'(x) = 6 x⁵ (x - 8)⁷ / (x² + 2)²+ 7x⁶ (x - 8)⁶ / (x² + 2)² - 4x⁷ (x - 8)⁷ / (x² + 2)³

then simplify by factoring :

f'(x) = x⁵ (x - 8)⁶/(x² + 2)³  • (6 (x - 8) (x² + 2) + 7x (x² + 2) - 4x² (x - 8))

Simplify the rest :

f'(x) = x⁵ (x - 8)⁶ (9x³ - 16x² + 26x - 96)/(x² + 2)³