Respuesta :

Answer:

[tex]2sec^2xtanx[/tex]

Step-by-step explanation:

[tex]\frac{d}{dx} tan^2x[/tex]

[tex]\frac{d}{dx} tanxtanx[/tex]

[tex](\frac{d}{dx}tanx)(tanx)+(tanx)(\frac{d}{dx}tanx)[/tex]

[tex]\frac{d}{dx}tanx=\frac{d}{dx}\frac{sinx}{cosx}=\frac{(cosx)(cosx)-(sinx)(-sinx)}{(cosx)^2}=\frac{cos^2x+sin^2x}{cos^2x}=\frac{1}{cos^2x}=sec^2x[/tex]

[tex](sec^2x)(tanx)+(tanx)(sec^2x)[/tex]

[tex]2sec^2xtanx[/tex]

Helpful tips:

Product Rule: [tex]\frac{d}{dx}f(x)g(x)=f'(x)g(x)+f(x)g'(x)=\frac{d}{dx}f(x)*g(x)+f(x)*\frac{d}{dx}g(x)[/tex]

Quotient Rule: [tex]\frac{d}{dx}\frac{f(x)}{g(x)}=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}=\frac{g(x)\frac{d}{dx}f(x)-f(x)\frac{d}{dx}g(x)}{(g(x))^2}[/tex]

Pythagorean Identity: [tex]cos^2x+sin^2x=1[/tex]