Respuesta :
Answer:
False.
General Formulas and Concepts:
Algebra I
Terms/Coefficients
- Factoring
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify.
[tex]\displaystyle \frac{d}{dx}[x^3e^x][/tex]
Step 2: Differentiate
- Derivative Rule [Product Rule]: [tex]\displaystyle \frac{d}{dx}[x^3e^x] = \frac{d}{dx}[x^3]e^x + x^3 \frac{d}{dx}[e^x][/tex]
- Derivative Rule [Basic Power Rule]: [tex]\displaystyle \frac{d}{dx}[x^3e^x] = 3x^2e^x + x^3 \frac{d}{dx}[e^x][/tex]
- Exponential Differentiation: [tex]\displaystyle \frac{d}{dx}[x^3e^x] = 3x^2e^x + x^3e^x[/tex]
- Factor: [tex]\displaystyle \frac{d}{dx}[x^3e^x] = (x^3 + 3x^2)e^x[/tex]
∴ [tex]\displaystyle \frac{d}{dx}[x^3e^x] \neq x^3e^x(3x + 2)[/tex] but [tex]\displaystyle \frac{d}{dx}[x^3e^x] = (x^3 + 3x^2)e^x[/tex].
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation