Respuesta :

Space

Answer:

False.

General Formulas and Concepts:

Algebra I

Terms/Coefficients

  • Factoring

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                             [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

[tex]\displaystyle \frac{d}{dx}[x^3e^x][/tex]

Step 2: Differentiate

  1. Derivative Rule [Product Rule]:                                                                     [tex]\displaystyle \frac{d}{dx}[x^3e^x] = \frac{d}{dx}[x^3]e^x + x^3 \frac{d}{dx}[e^x][/tex]
  2. Derivative Rule [Basic Power Rule]:                                                             [tex]\displaystyle \frac{d}{dx}[x^3e^x] = 3x^2e^x + x^3 \frac{d}{dx}[e^x][/tex]
  3. Exponential Differentiation:                                                                         [tex]\displaystyle \frac{d}{dx}[x^3e^x] = 3x^2e^x + x^3e^x[/tex]
  4. Factor:                                                                                                           [tex]\displaystyle \frac{d}{dx}[x^3e^x] = (x^3 + 3x^2)e^x[/tex]

∴ [tex]\displaystyle \frac{d}{dx}[x^3e^x] \neq x^3e^x(3x + 2)[/tex]  but  [tex]\displaystyle \frac{d}{dx}[x^3e^x] = (x^3 + 3x^2)e^x[/tex].

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation