Answer:
[tex]8m^2n^3[/tex], [tex]4n-5m[/tex], and [tex]4n+5m[/tex]
Step-by-step explanation:
[tex]128m^2n^5-200m^4n^3[/tex] <-- Given
[tex]m^2(128n^5-200m^2n^3)[/tex] <-- Factor out m²
[tex]m^2n^3(128n^2-200m^2)[/tex] <-- Factor out n³
[tex]8m^2n^3(16n^2-25m^2)[/tex] <-- Factor out 8
[tex]8m^2n^3(4n-5m)(4n+5m)[/tex] <-- Difference of Squares
Therefore, the factors are [tex]8m^2n^3[/tex], [tex]4n-5m[/tex], and [tex]4n+5m[/tex]