Respuesta :

The perimeter of a triangle is the sum of its side lengths.

The perimeter of triangle ACD is 40 units

Start by calculating the values of x and y, using the following equivalent ratios

[tex]6 : 4 = x - 2 : x - 4[/tex]

[tex]6 : 10 = 6 + x - 2 : y[/tex]

So, we have:

[tex]6 : 4 = x - 2 : x - 4[/tex]

Express as fraction

[tex]\frac 64 = \frac{x-2}{x-4}[/tex]

Cross multiply

[tex]6x - 24 = 4x - 8[/tex]

Collect like terms

[tex]6x - 4x = 24 - 8[/tex]

[tex]2x = 16[/tex]

Divide both sides by 2

[tex]x = 8[/tex]

Also, we have:

[tex]6 : 10 = 6 + x - 2 : y[/tex]

Express as fraction

[tex]\frac 6{10} = \frac{6 + x -2}{y}[/tex]

Substitute 8 for x

[tex]\frac 6{10} = \frac{6 + 8 -2}{y}[/tex]

[tex]\frac 6{10} = \frac{12}{y}[/tex]

Cross multiply

[tex]6y = 120[/tex]

Divide both sides by 6

[tex]y = 20[/tex]

The perimeter of triangle ACD is then calculated as:

[tex]P =6 + x - 2 + y + x - 4 + 4[/tex]

Substitute values for x and y

[tex]P =6 + 8 - 2 + 20 + 8 - 4 + 4[/tex]

[tex]P =40[/tex]

Hence, the perimeter of triangle ACD is 40 units

Read more about perimeter at:

https://brainly.com/question/19576164