[tex]a_c = 3.14\:\text{m/s}^2[/tex]
Explanation:
First, we need to convert the given angular speed [tex]\omega[/tex] from rev/s to rad/s:
[tex]2.50\:\dfrac{\text{rev}}{\text{s}}×\dfrac{2\pi\:\text{rad}}{1\:\text{rev}} = 15.7\:\text{rad/s}[/tex]
The centripetal acceleration [tex]a_c[/tex] is defined as
[tex]a_c = \dfrac{v^2}{r}[/tex]
Recall that [tex]v = r\omega[/tex] so we can write [tex]a_c[/tex] as
[tex]a_c = \dfrac{(r\omega)^2}{r} = \omega^2r[/tex]
[tex]\;\;\;\;\;=(15.7\:\text{rad/s})^2(0.200\:\text{m}) = 3.14\:\text{m/s}^2[/tex]