Help Me!
Refer To The Attachment
NOTE: Only for best users like Itz0kaul,Mscute, Mhanifa etc.
Spams Not allowed
Need answer with explanation
If you don't know the answer don't answer.
Thank You!​

Help MeRefer To The AttachmentNOTE Only for best users like Itz0kaulMscute Mhanifa etcSpams Not allowedNeed answer with explanation If you dont know the answer class=

Respuesta :

Answer:

[tex]to \: know \: the \: answer[/tex]

[tex]refer \: to \: the \: above \: attatchment[/tex]

Hope this helps !!

Ver imagen Аноним

Trigonometric identities are used to prove or disprove trigonometric ratios

The trigonometry identity is given as:

[tex]\frac{\cos(\pi + x) \cos(-x)}{\sin(\pi - x) \cos(\frac{\pi}{2} + x)} = \cot^2x[/tex]

Simplify the trigonometry identity, as follows:

[tex]\frac{-\cos(x) \cos(x)}{\sin( x) \cdot - \sin( x)} = \cot^2x[/tex]

This is so because:

[tex]\cos(\pi + x) = -\cos(x)[/tex]

[tex]\cos(-x) = \cos(x)[/tex]

[tex]\sin(\pi -x) = \sin(x)[/tex]

[tex]\cos(\frac{\pi}{2} + x)} = -\sin(x)[/tex]

So, we have:

[tex]\frac{-\cos(x) \cos(x)}{\sin( x) \cdot - \sin( x)} = \cot^2x[/tex]

Evaluate the products

[tex]\frac{-\cos^2(x)}{-\sin^2(x)} = \cot^2x[/tex]

Cancel out the common factors

[tex]\frac{\cos^2(x)}{\sin^2(x)} = \cot^2x[/tex]

Rewrite the trigonometry identity, as follows:

[tex](\frac{\cos(x)}{\sin(x)})^2 = \cot^2x[/tex]

In trigonometry,

[tex]\frac{\cos(x)}{\sin(x)} = \cot x[/tex]

So, we have:

[tex](\cot(x))^2 = \cot^2x[/tex]

Remove the bracket

[tex]\cot^2x = \cot^2x[/tex]

The above equation is true.

Hence, [tex]\frac{\cos(\pi + x) \cos(-x)}{\sin(\pi - x) \cos(\frac{\pi}{2} + x)} = \cot^2x[/tex] has been proved

Read more about trigonometric identities at:

https://brainly.com/question/7331447