Respuesta :

Answer:

f(x) = 8.917x³ + 2x² + 0.083x - 7

Step-by-step explanation:

f(x)= y

Let the coefficients of x³, x², x be a, b, c and the constant be d

y= ax³ + bx² + cx + d

When y = -65, x = -2

-65= a(-2)³ + b(-2)² + c(-2) + d

-65= -8a + 4b - 2c + d ...eq. 1

When y = -14, x = -1

-14= a(-1)³ + b(-1)² + c(-1) + d

-14= -a + b - c + d ...eq. 2

When y = -7, x = 0

-7= a(0)³ + b(0)² + c(0) + d

-7 = d ...eq.3

When y = 4, x = 1

4= a(1)³ + b(1)² + c(1) + d

4= a + b + c + d ...eq. 4

when y = 78, x = 2

78 = a(2)³ + b(2)² + c(2) + d

78= 8a + 4b + 2c + d ...eq. 5

From eq. 3, d is - 7

putting d as - 7 in equations 1, 2, 4 and 5

In eq. 1,

-65= -8a + 4b - 2c - 7

-58= -8a + 4b - 2c ...eq. 6

In eq. 2

-14= -a + b - c - 7

-7= -a + b - c ...eq. 7

In eq. 4,

4= a + b + c - 7

11= a + b + c ...eq. 8

In eq. 5

78= 8a + 4b + 2c - 7

85= 8a + 4b + 2c ...eq.9

Subtracting eq. 9 from eq. 6

-143 = -16a - 4c... eq 10

subtracting eq. 8 from eq 7

-18= -2a - 2c

9= a + c

a = 9 - c ...eq 11

putting a as 9 - c in eq. 10

-143 = -16(9 - c) - 4c

-143 = -144 + 16c - 4c

1= 12c

c = 1/12 or 0.083

putting c as 1/12 in eq. 11

a = 9 - 1/12

a = 107/12 or 8.917

Putting a as 107/12 and c as 1/12 in eq. 8

11= 107/12 + b + 1/12

multiplying through by 13

132 = 107 + 12b + 1

132 - 108 = 12b

24= 12b

b = 24/12

= 2

Therefore, a= 8.917, b= 2, c= 0.083 and d = -7

f(x) = 8.917x³ + 2x² + 0.083x - 7