Respuesta :
Explanation :-
- Let's assume the lowest integer be x.Then the next integer x+2 (since our integers need to be even) and the third integer x+4.
[tex]\qquad[/tex]____________________
It’s given–
- The sum of three consecutive even numbers is 42.
[tex] \bf{\underline{\underline{\dag According\ to\ the\ question:-}}} [/tex]
[tex]\qquad[/tex][tex] \pink{\bf\longrightarrow {x+( x +2)+(x+4) = 42} }[/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow 3x +6 =42[/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow 3x = 42-6[/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow 3x =36[/tex]
[tex]\qquad[/tex][tex] \sf \longrightarrow x = \cancel {\dfrac{36}{3}}[/tex]
[tex]\qquad[/tex][tex]\pink{ \bf\longrightarrow x = 12}[/tex] ( which is our lowest integer.)
- The smallest of these numbers is 12. And the next two integers we find with 12+2=14 and 12+4=16.
[tex]\qquad[/tex]____________________
Given :
- Sum of three consecutive even numbers is 42. We are to find the smallest of the smallest consecutive even number.
[tex] \: [/tex]
Solution :
Let us assume the three consecutive even numbers be "x" , "(x + 2)" and "(x + 4)" . Here x is the smallest number .
So,
According to the Question :
x + (x + 2) + (x + 4) = 42
⇢x + x + 2 + x + 4 = 42
⇢ x + x + x + 2 + 4 = 42
⇢ 3x + 6 ⠀⠀⠀⠀⠀ = 42
⇢ 3x ⠀⠀⠀⠀⠀⠀⠀⠀= 42 - 6
⇢ 3x ⠀⠀⠀⠀⠀⠀⠀⠀= 36
⇢ x ⠀⠀⠀⠀⠀⠀⠀⠀= 36/3
⇢ x ⠀⠀⠀⠀⠀⠀⠀⠀ = 12
Hence, 12 is the smallest consecutive even number.