Respuesta :

Answer:

p = - [tex]\frac{2}{3}[/tex] , p = 2

Step-by-step explanation:

Using the discriminant to solve for p

Δ = b² - 4ac

The condition on the discriminant for 2 eeal and equal roots is

b² - 4ac = 0

Given

p²x² - (p + 2)x + 1 = 0

with a = p² , b = - (p + 2) , c = 1 , then

(- (p + 2) )² - 4p² = 0

(p + 2)² - 4p² = 0

p² + 4p + 4 - 4p² = 0

- 3p² + 4p + 4 = 0 ( multiply through by - 1 )

3p² - 4p - 4 = 0 ← in standard form

(3p + 2)(p - 2) = 0 ← in factored form

Equate each factor to zero and solve for p

3p + 2 = 0 ⇒ 3p = - 2 ⇒ p = - [tex]\frac{2}{3}[/tex]

p - 2 = 0 ⇒ p = 2