Exchanging x and y and isolating y, it is found that the inverse function is:
[tex]g^{-1}(x) = \frac{1 + x}{x}[/tex]
The function given is:
[tex]g(x) = y = \frac{1}{x - 1}[/tex]
To find the inverse function, we exchange x and y and isolate y, hence:
[tex]x = \frac{1}{y - 1}[/tex]
[tex]x(y - 1) = 1[/tex]
[tex]xy - x = 1[/tex]
[tex]xy = 1 + x[/tex]
[tex]y = \frac{1 + x}{x}[/tex]
Hence, the inverse function is:
[tex]g^{-1}(x) = \frac{1 + x}{x}[/tex]
You can learn more about inverse functions at https://brainly.com/question/16485117