Respuesta :

Answer:

S (2, - 15 )

Step-by-step explanation:

Given endpoints (x₁, y₁ ) and (x₂, y₂ ) then the midpoint is

( [tex]\frac{x_{1}+x_{2} }{2}[/tex] , [tex]\frac{y_{1}+y_{2} }{2}[/tex] )

Using (x₁, y₁ ) = T (0, 3 ) and (x₂, y₂ ) = S (x, y )

Calculate the midpoint using above and equate to coordinates of (1, - 6 )

[tex]\frac{x+0}{2}[/tex] = 1 ( multiply both sides by 2 )

x = 2

[tex]\frac{y+3}{2}[/tex] = - 6 ( multiply both sides by 2 )

y + 3 = - 12 ( subtract 3 from both sides )

y = - 15

S has coordinates (x, y ) = (2, - 15 )

Answer:

Point S is at the ordered pair (2,-15)

Step-by-step explanation:

midpoint formula : midpoint ordered pair (x,y) = ( [tex]\frac{x1+x2}{2}[/tex],[tex]\frac{y1+y2}{2}[/tex])

midpoint x = [tex]\frac{x1+x2}{2}[/tex] ; midpoint y = [tex]\frac{y1+y2}{2}[/tex]

midpoint x = 1 x1 = 0 midpoint y = -6 y1=3

Solve each equation for x2 and y2 to get the points for S.

x = [tex]\frac{x1+x2}{2}[/tex]

1 = (0) +x2 / 2

2 = x2

y = [tex]\frac{y1+y2}{2}[/tex]

-6 = 3 + y2 / 2

-12 = 3 + y2

-15 = y2

(2,-15) are the coordinates to point S.