PLEASE HELP WILL MARK BRAINLIEST

Answer:
S (2, - 15 )
Step-by-step explanation:
Given endpoints (x₁, y₁ ) and (x₂, y₂ ) then the midpoint is
( [tex]\frac{x_{1}+x_{2} }{2}[/tex] , [tex]\frac{y_{1}+y_{2} }{2}[/tex] )
Using (x₁, y₁ ) = T (0, 3 ) and (x₂, y₂ ) = S (x, y )
Calculate the midpoint using above and equate to coordinates of (1, - 6 )
[tex]\frac{x+0}{2}[/tex] = 1 ( multiply both sides by 2 )
x = 2
[tex]\frac{y+3}{2}[/tex] = - 6 ( multiply both sides by 2 )
y + 3 = - 12 ( subtract 3 from both sides )
y = - 15
S has coordinates (x, y ) = (2, - 15 )
Answer:
Point S is at the ordered pair (2,-15)
Step-by-step explanation:
midpoint formula : midpoint ordered pair (x,y) = ( [tex]\frac{x1+x2}{2}[/tex],[tex]\frac{y1+y2}{2}[/tex])
midpoint x = [tex]\frac{x1+x2}{2}[/tex] ; midpoint y = [tex]\frac{y1+y2}{2}[/tex]
midpoint x = 1 x1 = 0 midpoint y = -6 y1=3
Solve each equation for x2 and y2 to get the points for S.
x = [tex]\frac{x1+x2}{2}[/tex]
1 = (0) +x2 / 2
2 = x2
y = [tex]\frac{y1+y2}{2}[/tex]
-6 = 3 + y2 / 2
-12 = 3 + y2
-15 = y2
(2,-15) are the coordinates to point S.