Respuesta :

Answer:

24

Step-by-step explanation:

We have a system of equations, so we can start with the second equation:

[tex]x-y=2[/tex]

And move y to the other side to isolate x:

[tex]x=2+y[/tex]

Now we can replace x into the first equation:

[tex](2+y)^{2} -y^{2} =48\\ (2+y)(2+y)-y^{2} =48\\ 4+4y+y^{2} -y^{2} =48[/tex]

Notice that we can cancel out the y squared terms:

[tex]4+4y=48\\ 4y=44\\ y=11[/tex]

Now we just need to find x by replacing y into the second equation:

[tex]x-11=2\\ x=13[/tex]

And finally, add them:

[tex]x+y=11+13\\ x+y=24[/tex]

Hope this helps.

Answer:

x= 13

y=11

x^2 - y^2 = 48        and       x - y = 2

                                           x = 2 + y

(2 + y)^2 - y^2 = 48

(2 + y) (2 + y) - y^2 = 4

(4 + 2y +2y + y^2) -y^2 = 48

4 + 4y + y^2 - y^2 = 48

4 + 4y = 48

4y = 48 -4

4y = 44

y= 44/4

y= 11

Plug y back into the original equation:

x^2 - y^2 = 48

x^2 - 11^2 = 48

x^2 - 121 = 48

x^2 = 121 + 48

x^2 = 169

The square root of 169 is 13

So x= 13

x + y

13 + 11 = 24