The rational zero test is also known as the rational root test, and it is used to determine the potential root of a function.
(a) 1/2 is not a possible zero of the function
The function is given as:
[tex]f(x) =x^3 - 5x + \frac 25[/tex]
For a function,
[tex]f(x) = px^n +......q[/tex]
The list of possible roots is:
[tex]Roots = \pm\frac{Factors\ of\ q}{Factors\ of\ p}[/tex]
Multiply both sides of [tex]f(x) =x^3 - 5x + \frac 25[/tex] by 5
[tex]5f(x) = 5x^3 - 25x + 2[/tex]
So, we have:
[tex]p= 5[/tex]
[tex]q = 2[/tex]
The factors are:
[tex]p =\pm 1, \pm 5[/tex]
[tex]q =\pm 1, \pm 2[/tex]
So, the possible roots are:
[tex]Roots = \pm\frac{1,2}{1,5}[/tex]
Split
[tex]Roots = \pm1, \pm \frac 15, \pm 2, \pm \frac 25}[/tex]
Hence, 1/2 is not a possible zero of the function
Read more about rational zero test at:
https://brainly.com/question/12860313