Respuesta :

Answer:

[tex]x=\frac{10y-27}{5\left(-2+y\right)};\quad \:y\ne \:2[/tex]

Step-by-step explanation:

First, you have to simplify [tex]\frac{-7}{5(x-2)}[/tex] to become [tex]-\frac{-7}{5(x-2)}[/tex]

Next, you multiply both sides by [tex]5(x-2)[/tex] to make [tex]y\cdot \:5\left(x-2\right)-2\cdot \:5\left(x-2\right)=-\frac{7}{5\left(x-2\right)}\cdot \:5\left(x-2\right)[/tex]

After that, you need to simplify again to become [tex]y\cdot \:5\left(x-2\right)-10\left(x-2\right)=-7[/tex]

Now, expand [tex]5(x-2)-10(x-2)[/tex] to become [tex]5xy-10y-10x+20=-7[/tex]

Then, add 10y to both sides [tex]5xy-10y-10x+20+10y=-7+10y[/tex]

Next, you simplify to create [tex]5xy-10x+20=-7+10y[/tex]

After that, subtract 20 from both sides to make [tex]5xy-10x+20-20=-7+10y-20[/tex]

Now, simplify again to get [tex]5xy-10x=10y-27[/tex]

Next, factor [tex]5xy-10x[/tex] to get [tex]5x(y-2)[/tex]

Finally, divide both sides by [tex]5(y-2)[/tex] to get [tex]\frac{5x\left(y-2\right)}{5\left(y-2\right)}=\frac{10y}{5\left(y-2\right)}-\frac{27}{5\left(y-2\right)};\quad \:y\ne \:2[/tex]

If you did it right your final answer should be [tex]x=\frac{10y-27}{5\left(-2+y\right)};\quad \:y\ne \:2[/tex]

Hope this helps explain it!