Will mark brainly!

What is the inverse of [tex]f(x)=\frac{2}{x-1} +6?[/tex]
[tex]f^{-1} (x)=\frac{2}{x-1} +6[/tex]
[tex]f^{-1} (x)=\frac{2}{x} +7[/tex]
[tex]f^{-1} (x)=\frac{2}{y-6} +1[/tex]
[tex]f^{-1} (x)=\frac{2}{x-6} +1[/tex]

Respuesta :

Answer:

[tex] {f}^{ - 1} (x) = \frac{2}{x - 6} + 1[/tex]

Step-by-step explanation:

we will subistitute f(x) by y and solve the equation in order to get the value of x,

then we subistitute x by y and y by x and y=f^-1(x)