Respuesta :

The value of x from the expression is [tex]\frac{ln8-8}{3}[/tex]

Given the exponential function [tex]e^{3x+8}=8[/tex]

Take the natural logarithm of both sides:

[tex]lne^{3x+8}=ln8\\3x +8=ln8[/tex]

Subtract 8 from both sides:

[tex]3x-8+8=ln8-8\\3x=ln8-8[/tex]

Divide both sides by 3:

[tex]\frac{3x}{3} =\frac{ln8-8}{3}\\x= \frac{ln8-8}{3}[/tex]

Hence the value of x from the expression is [tex]\frac{ln8-8}{3}[/tex]

Learn more on exponential functions here: https://brainly.com/question/12940982

Ver imagen abidemiokin