The value of x from the expression is [tex]\frac{ln8-8}{3}[/tex]
Given the exponential function [tex]e^{3x+8}=8[/tex]
Take the natural logarithm of both sides:
[tex]lne^{3x+8}=ln8\\3x +8=ln8[/tex]
Subtract 8 from both sides:
[tex]3x-8+8=ln8-8\\3x=ln8-8[/tex]
Divide both sides by 3:
[tex]\frac{3x}{3} =\frac{ln8-8}{3}\\x= \frac{ln8-8}{3}[/tex]
Hence the value of x from the expression is [tex]\frac{ln8-8}{3}[/tex]
Learn more on exponential functions here: https://brainly.com/question/12940982