The linear equations [tex]c_{2}+c_{1}+c_{o} = 3[/tex], [tex]4\cdot c_{2} + 2\cdot c_{1}+ c_{o} = 1[/tex] and [tex]4\cdot c_{2} - 2\cdot c_{1} + c_{o} = -15[/tex] can be written given the points [tex](x_{1}, y_{1}) = (1, 3)[/tex], [tex](x_{2}, y_{2}) = (2, 1)[/tex] and [tex](x_{3}, y_{3}) = (-2, -15)[/tex].
A quadratic function ([tex]p(x)[/tex]) is a second order polynomial of the form:
[tex]p(x) = \Sigma\limits_{i= 0}^{2} c_{i}\cdot x^{i} = c_{2}\cdot x^{2}+c_{1}\cdot x + c_{o}[/tex] (1)
Where:
- [tex]x[/tex] - Independent variable
- [tex]i[/tex] - Monomial index
- [tex]c_{i}[/tex] - i-th coefficient
To determine the value of all coefficients, we need three distinct points on plane and create a resulting system of linear equations.
If we know that [tex](x_{1}, y_{1}) = (1, 3)[/tex], [tex](x_{2}, y_{2}) = (2, 1)[/tex] and [tex](x_{3}, y_{3}) = (-2, -15)[/tex], then the system of linear equations is:
[tex]c_{2}+c_{1}+c_{o} = 3[/tex] (2)
[tex]4\cdot c_{2} + 2\cdot c_{1}+ c_{o} = 1[/tex] (3)
[tex]4\cdot c_{2} - 2\cdot c_{1} + c_{o} = -15[/tex] (4)
The linear equations [tex]c_{2}+c_{1}+c_{o} = 3[/tex], [tex]4\cdot c_{2} + 2\cdot c_{1}+ c_{o} = 1[/tex] and [tex]4\cdot c_{2} - 2\cdot c_{1} + c_{o} = -15[/tex] can be written given the points [tex](x_{1}, y_{1}) = (1, 3)[/tex], [tex](x_{2}, y_{2}) = (2, 1)[/tex] and [tex](x_{3}, y_{3}) = (-2, -15)[/tex].
To learn more on systems of linear equations, we kindly invite to check this verified question: https://brainly.com/question/20379472