Respuesta :

-10 sin(x) = -4 csc(x) + 3

Recall that csc(x) = 1/sin(x) :

-10 sin(x) = -4/sin(x) + 3

Multiply both sides by sin(x) :

-10 sin²(x) = -4 + 3 sin(x)

Move everything to one side:

10 sin²(x) + 3 sin(x) - 4 = 0

Factorize the left side:

(2 sin(x) - 1) (5 sin(x) + 4) = 0

Then we have two cases,

2 sin(x) - 1 = 0   or   5 sin(x) + 4 = 0

Solve for sin(x) :

sin(x) = 1/2   or   sin(x) = -4/5

Solve for x :

• if sin(x) = 1/2, then

x = arcsin(1/2) + 2nπ   or   x = π - arcsin(1/2) + 2nπ

x = π/6 + 2nπ   or   x = 5π/6 + 2nπ

• if sin(x) = -4/5, then

x = arcsin(-4/5) + 2nπ   or   x = π - arcsin(-4/5) + 2nπ

x = -arcsin(4/5) + 2nπ   or   x = π + arcsin(4/5) + 2nπ

(where n is any integer)