Respuesta :

The value of the cosine of angle [tex]k[/tex] is 1.

Given a point [tex](x,y)[/tex] that is a terminal arm of an angle [tex]k[/tex] in standard position, by trigonometric relations we have the following expression for the cosine:

[tex]\cos k = \frac{x}{\sqrt{x^{2}+y^{2}}}[/tex] (1)

Where:

  • [tex]k[/tex] - Angle measure, in sexagesimal degrees.
  • [tex]x[/tex] - Horizontal position of the point of the terminal arm, no unit.
  • [tex]y[/tex] - Vertical position of the point of the terminal arm, no unit.

If we know that [tex]x = 5[/tex] and [tex]y = 0[/tex], then the cosine of the angle [tex]k[/tex] is:

[tex]\cos k = \frac{5}{\sqrt{5^{2}+0^{2}}}[/tex]

[tex]\cos k = 1[/tex]

The value of the cosine of angle [tex]k[/tex] is 1.

To learn more on trigonometric relations, we kindly invite to check this verified question: https://brainly.com/question/6904750