Which equation represents the partial sum of the geometric series? mc006-1. Jpg 125 25 5 1 25 5 1 one-fifth 1 one-fifth StartFraction 1 Over 25 EndFraction StartFraction 1 Over 125 EndFraction StartFraction 1 Over 125 EndFraction one-fifth 5 125.

Respuesta :

The equation that represents the partial sum of the geometric series is 125, 25, 5, 1

Given the partial sum of a geometric sequence expressed as:

[tex]\sum\left { n=4 \atop {n=1}} \right. 125(\frac{1}{5} )^{n-1}[/tex]

If n = 1, the

a(1) = [tex]125(\frac{1}{5} )^{1-1}\\[/tex]

a(1) = [tex]125(\frac{1}{5} )^{0}\\[/tex]

a(1) = 125

If n = 2

a(2) = [tex]125(\frac{1}{5} )^{2-1}\\[/tex]

a(2) = [tex]125(\frac{1}{5} )^{1}\\[/tex]

a(2) = 25

If n = 3

a(3)= [tex]125(\frac{1}{5} )^{3-1}\\[/tex]

a(3) = [tex]125(\frac{1}{5} )^{2}\\[/tex]

a(3) = 5

If n = 4

a(4)= [tex]125(\frac{1}{5} )^{4-1}\\[/tex]

a(4) = [tex]125(\frac{1}{5} )^{3}\\[/tex]

a(4) = 1

Hence the equation that represents the partial sum of the geometric series is 125, 25, 5, 1

Learn more on geometric sequence here: https://brainly.com/question/24643676

Answer:

a

Step-by-step explanation: