The radius of the table top, rounded to 1 dp is 5.6 cm
From the question,
We are to determine the radius of the table top
First, we will determine the volume of the cylindrical wooden table
From the given information
Density = 0.42 g/cm³
Mass = 0.25 kg = 250 g
Using the formula
[tex]Volume = \frac{Mass}{Density}[/tex]
∴ [tex]Volume = \frac{250}{0.42}[/tex]
Volume = 595.238 cm³
Now, for the radius of the table top
Using the formula for volume of a cylinder
[tex]V = \pi r^{2}h[/tex]
Where V is the volume
r is the radius
and h is the height or depth
From the given information
h = 6cm
Putting the parameters into the formula
[tex]595.238 = \pi r^{2} \times 6[/tex]
∴ [tex]r^{2} = \frac{595.238}{6\pi }[/tex]
[tex]r^{2} =31.57835667[/tex]
[tex]r =\sqrt{31.57835667}[/tex]
r = 5.6 cm
Hence, the radius of the table top, rounded to 1 dp is 5.6 cm
Learn more here: https://brainly.com/question/11178104