Respuesta :
Applying the equation for the area of the trapezoid, it is found that the height is of 10 cm.
The area of a trapezoid is half the multiplication of the sum of the bases and the height, that is:
[tex]A = \frac{h}{2}(b_1 + b_2)[/tex]
For this problem, we have that: [tex]A = 205, b_1 = 20, b_2 = 21[/tex], hence:
[tex]A = \frac{h}{2}(b_1 + b_2)[/tex]
[tex]205 = \frac{h}{2}(20 + 21)[/tex]
[tex]20.5h = 205[/tex]
[tex]h = \frac{205}{20.5}[/tex]
[tex]h = 10[/tex]
The height is of 10 cm.
To learn more about area of a trapezoid, https://brainly.com/question/9918120
Answer:
The height of trapezoid is 10 cm.
Step-by-step explanation:
Given :
- »» [tex]\rm{b_1}[/tex] = 20 cm
- »» [tex]\rm{b_2}[/tex] = 21 cm
- »» [tex]\rm{area}[/tex] = 205 cm²
To Find :
- »» Height of trapezoid
Using Formula :
[tex]{\star{\small{\underline{\boxed{\sf{\red{Area_{(Trapezoid)} = \dfrac{1}{2} \Big(b_1 + b_2\Big)h}}}}}}}[/tex]
- ✧ [tex]\rm{b_1}[/tex] = 20 cm
- ✧ [tex]\rm{b_2}[/tex] = 21 cm
- ✧ [tex]\rm{area}[/tex] = 205 cm²
Solution :
Substituting all the given values in the formula to find height of trapezoid :
[tex]{\dashrightarrow{\small{\sf{Area_{(Trapezoid)} = \dfrac{1}{2} \Big(b_1 + b_2\Big)h}}}}[/tex]
[tex]{\dashrightarrow{\small{\sf{205 = \dfrac{1}{2} \Big(20 + 21\Big)h}}}}[/tex]
[tex]{\dashrightarrow{\small{\sf{205 = \dfrac{1}{2} \Big( \: 41 \: \Big)h}}}}[/tex]
[tex]{\dashrightarrow{\small{\sf{205 = \dfrac{1}{2} \times 41 \times h}}}}[/tex]
[tex]{\dashrightarrow{\small{\sf{205 = \dfrac{ 41}{2}\times h}}}}[/tex]
[tex]{\dashrightarrow{\small{\sf{h = 205 \times \dfrac{2}{41}}}}}[/tex]
[tex]{\dashrightarrow{\small{\sf{h = \cancel{205} \times \dfrac{2}{\cancel{41}}}}}}[/tex]
[tex]{\dashrightarrow{\small{\sf{h =5 \times 2}}}}[/tex]
[tex]{\dashrightarrow{\small{\sf{h =10 \: cm}}}}[/tex]
[tex]{\star{\small{\underline{\boxed{\frak{\pink{h =10 \: cm}}}}}}}[/tex]
Hence, the height of trapezoid is 10 cm.
[tex]\rule{300}{1.5}[/tex]