Find the volume of the cylinder. Enter the answer EXACTLY please, no rounding.

Answer:
V≈1.25664×10^6
Step-by-step explanation:
The formula for the volume of a cylinder is V=πr2h, so if you plug in the values for radius and height (V=πr2h=π·100^2·40), you get .25664×10^6)
Answer:
The volume of cylinder is 314000 ft³.
Step-by-step explanation:
Solution :
Here we have given that :
We need to find the volume of cylinder.
Here's the required formula to find volume of cylinder :
[tex]\longrightarrow{\pmb{\sf{Volume_{(Cylinder)}= \pi{r}^{2}h}}}[/tex]
Substituting all the given values in the formula to find the volume of cylinder :
[tex]\longrightarrow{\sf{Volume_{(Cylinder)}= \pi{r}^{2}h}}[/tex]
[tex]\longrightarrow{\sf{Volume_{(Cylinder)}= 3.14{(50)}^{2}40}}[/tex]
[tex]{\longrightarrow{\sf{Volume_{(Cylinder)}= 3.14{(50 \times 50)}40}}}[/tex]
[tex]{\longrightarrow{\sf{Volume_{(Cylinder)}= 3.14{(2500)}40}}}[/tex]
[tex]{\longrightarrow{\sf{Volume_{(Cylinder)}= 3.14 \times 2500 \times 40}}}[/tex]
[tex]{\longrightarrow{\sf{Volume_{(Cylinder)}= 3.14 \times 100000}}}[/tex]
[tex]{\longrightarrow{\sf{Volume_{(Cylinder)}= \dfrac{314}{100} \times 100000}}}[/tex]
[tex]{\longrightarrow{\sf{Volume_{(Cylinder)}= \dfrac{314 \times 100000}{100}}}}[/tex]
[tex]{\longrightarrow{\sf{Volume_{(Cylinder)}= \dfrac{31400000}{100}}}}[/tex]
[tex]{\longrightarrow{\sf{Volume_{(Cylinder)}= 314000 \: {ft}^{3}}}}[/tex]
[tex]\star{\underline{\boxed{\sf{\purple{Volume_{(Cylinder)}= 314000 \: {ft}^{3}}}}}}[/tex]
Hence, the volume of cylinder is 314000 ft³.
[tex]\rule{300}{2.5}[/tex]