Respuesta :
Answer:
14, 21, 28
Step-by-step explanation:
2x + 3x + 4x = 63
Add like terms
9x = 63
Divide both sides by 9
9x/9 = 63/9
x = 7
Solve for each side by substituting in for x
2x = 2(7) = 14
3x = 3(7) = 21
4x = 4(7) = 28
To check if it is correct, add the three answers together.
14 + 21 + 28 = 63
Answer:
The dimensions if triangle are 14m, 21m, 28m.
Step-by-step explanation:
Given :
- [tex]\small\purple\bull[/tex] Ratio of sides of triangle = 2 : 3 : 4
- [tex]\small\purple\bull[/tex] Perimeter of triangle = 63 m.
[tex]\begin{gathered}\end{gathered}[/tex]
Let the :
- [tex]\small\purple\bull[/tex] Sides of triangle be = 2x, 3x, 4x
- [tex]\small\purple\bull[/tex] Perimeter of triangle = 63 m.
[tex]\begin{gathered}\end{gathered}[/tex]
As we know that :
- Perimeter of triangle = Sum of sides of triangle
[tex]\begin{gathered}\end{gathered}[/tex]
According to the question :
Substituting all the given values in the formula to find the dimensions of triangle :
[tex] \begin{gathered} \qquad\longrightarrow{\sf{Perimeter_{(\triangle)}= Sum \: of \: sides}} \\ \\ \quad\longrightarrow{\sf{63x= 2x + 3x + 4x}} \\ \\ \quad\longrightarrow{\sf{63x= 5x + 4x}} \\ \\ \quad\longrightarrow{\sf{63x= 9x}} \\ \\ \quad\longrightarrow{\sf{x= \frac{63}{9}}} \\ \\ \quad\longrightarrow{\sf{x = 7}} \\ \\ \quad{\star{\underline{\boxed{\sf{\purple{x = 7}}}}}}\end{gathered}[/tex]
Hence, the value of x is 7.
[tex]\begin{gathered}\end{gathered}[/tex]
Thus :
- [tex]\pink\star[/tex] 2x = 2 × 7 = 14 m
- [tex]\pink\star[/tex] 3x = 3 × 7 = 21 m
- [tex]\pink\star[/tex] 4x = 4 × 7 = 28 m
[tex]\rule{300}{2.5}[/tex]